Abstract
Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. This paper discusses a method for Robust Sparse CCA. Sparse estimation produces canonical vectors with some of their elements estimated as exactly zero. As such, their interpretability is improved. We also robustify the method such that it can cope with outliers in the data. To estimate the canonical vectors, we convert the CCA problem into an alternating regression framework, and use the sparse Least Trimmed Squares estimator. We illustrate the good performance of the Robust Sparse CCA method in several simulation studies and two real data examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.