Abstract

The spiral arrangement (phyllotaxis) of leaves is a shared morphology in land plants, and exhibits diversity constrained to the Fibonacci sequence. Phyllotaxis in vascular plants is produced at a multicellular meristem, whereas bryophyte phyllotaxis emerges from a single apical stem cell (AC) that is embedded in a growing tip of the gametophyte. An AC is asymmetrically divided into itself and a single 'merophyte', producing a future leaf and a portion of the stem. Although it has been suggested that the arrangement of merophytes is regulated by a rotation of the division plane of an AC, the quantitative description of the merophyte arrangement and its regulatory mechanism remain unclear. To clarify them, we examined three moss species, Tetraphis pellucida, Physcomitrium patens, and Niphotrichum japonicum, which exhibit 1/3, 2/5, and 3/8 spiral phyllotaxis, respectively. We measured the angle between the centroids of adjacent merophytes relative to the AC centroid on cross-transverse sections. At the outer merophytes, this divergence angle converged to nearly 120[Formula: see text] in T. pellucida, 136[Formula: see text] in N. japonicum, and 141[Formula: see text] in P. patens, which was nearly consistent with phyllotaxis, whereas the divergence angle deviated from the converged angle at the inner merophytes near an AC. A mathematical model, which assumes scaling growth of AC and merophytes and a constant angle of division plane rotation, quantitatively reproduced the sequence of the divergence angles. This model showed that successive relocations of the centroid position of an ACupon its division inevitably result in the transient deviation of the divergence angle. As a result, the converged divergence angle was equal to the rotation angle, predicting that the latter is a major regulator of the spiral phyllotaxis diversity in mosses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.