Abstract

Pointed arches are important architectural elements of both western and eastern historical built heritage. In this paper, the effects that different geometrical (slenderness and sharpness) and mechanical (friction and cohesion) parameters have on the in-plane structural response of masonry pointed arches are investigated through the implementation of an upper bound limit analysis approach capable of representing sliding between rigid blocks. Results, in terms of collapse multipliers are presented and quantitatively analyzed following a systematic statistical approach, whereas collapse mechanisms are qualitatively explored and three different outcomes are found; pure rotation, pure sliding and mixed collapse mechanisms. It is concluded that the capacity of the numerical approach implemented to reproduce sliding between blocks plays a major role in the better understanding of masonry pointed arches structural response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call