Abstract

A new numerical code for computing stationary axisymmetric rapidly rotating stars in general relativity is presented. The formulation is based on a fully constrained-evolution scheme for 3 + 1 numerical relativity using the Dirac gauge and maximal slicing. We use both the polytropic and MIT bag model equations of state to demonstrate that the code can construct rapidly rotating neutron star and strange star models. We compare numerical models obtained by our code and a well-established code, which uses a different gauge condition, and show that the two codes agree to a high degree of accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.