Abstract
In this paper, we obtain a new class of stationary axisymmetric spacetimes by using the Gürses–Gürsey metric with an appropriate mass function in order to generate a rotating core of matter that may be smoothly matched to the exterior Kerr metric. The same stationary spacetimes may be obtained by applying a slightly modified version of the Newman–Janis algorithm to a nonrotating spherically symmetric seed metric. The starting spherically symmetric configuration represents a nonisotropic de Sitter-type fluid whose radial pressure [Formula: see text] satisfies an state equation of the form [Formula: see text], where the energy density [Formula: see text] is chosen to be the Tolman-type-VII energy density [R. C. Tolman, Phys. Rev. 55, 364 (1939)]. The resulting rotating metric is then smoothly matched to the exterior Kerr metric, and the main properties of the obtained geometries are investigated. All the solutions considered in this study are regular in the sense they are free of curvature singularities. Depending on the relative values of the total mass m and rotation parameter a, the resulting stationary spacetimes represent different kinds of rotating compact objects such as regular black holes, extremal regular black holes, and regular starlike configurations.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.