Abstract

As one of the key technologies in the development of Unmanned Aerial Vehicle (UAV), the path planning method has an intuitive impact on the real-time performance of UAV. Most existing path planning algorithms have drawbacks in global optimization ability or optimization speed, and cannot meet the requirements of practical applications. To improve the effectiveness and practicability of the path planning algorithm for UAV obstacle avoidance, this paper proposes the Rotate Artificial Potential Field (R-APF) method based on the traditional artificial potential field method. By introducing a new potential field function and stimulating rotating repulsive force, the R-APF solves the problems of local minimum as well as inaccessibility to targets near obstacles, respectively. Convergence of the algorithm is discussed to demonstrate the feasibility of R-APF. This paper also designs and implements algorithm feasibility verification experiments, obstacle shuttle experiments, as well as running time, and efficiency comparison experiments. In addition, the improved Visual-Inertial Navigation System obstacle detection algorithm is introduced to carry out physical verification experiments. Theoretical proof and experimental results show the proposed R-APF method has higher obstacle avoidance capability, shorter running time, and higher success rate compared to other algorithms, and is promising in practical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call