Abstract
Rotary ultrasonic machining (RUM) is an abrasive based advanced machining technique for cutting and finishing of various hard and fragile materials like ceramic, ceramics composite, glass, titanium and its alloy etc. RUM is the development over stationary ultrasonic machining for enhancement of MRR, geometrical accuracy and surface roughness. The basic mechanism of RUM is the combination of ultrasonic machining and conventional diamond grinding. In this chapter development, principle, mechanism, setup details of rotary ultrasonic machining has been discussed. It also highlights the effects of diverse input parameters on performance of RUM. The MRR always increases with spindle speed; tool feed rate and ultrasonic power. The surface roughness improved with spindle speed but worse with tool feed rate and ultrasonic power. The chipping size reduced with spindle speed but increase with tool feed rate and ultrasonic power. The cutting force reduces with spindle speed and ultrasonic power but increases with tool feed. Various advancements in RUM has also discussed. A new technique for drilling called robotic rotary ultrasonic drilling (RRUD) was developed. The application area of rotary ultrasonic machining (RUM) in micro domain has also been highlighted. It is extensively useful for generation of micro feature like micro hole, micro channel, complex micro cavity etc. on various materials such as quartz, glass, SiC, and Al2O3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have