Abstract

Ceramic matrix composites (CMC) are enabling materials for a number of high-temperature and demanding applications in aerospace, power generation, ground transportation, nuclear, environmental, and chemical industries. Tremendous progress has been made in technology development, manufacturing, commercialization, and applications of CMC over the last few years. However, significant challenges (such as the lack of specifications, databases, and in-service repair methodology, and high machining cost) still remain for their widespread applications. In this paper, rotary ultrasonic machining (RUM) is introduced into drilling holes on CMC panels for the first time. The feasibility to machine CMC using RUM is investigated. Cutting forces and material removal rates (MRR) are compared for machining of CMC with and without ultrasonic vibration and for two types of CMC materials and one typical advanced ceramic material (alumina). Chippings at the hole exit are also observed under a microscope. Furthermore, the paper presents the results of a designed experimental investigation into RUM of CMC. A three-variable two-level full factorial design is employed to reveal main effects as well as interaction effects of three RUM process parameters (spindle speed, feedrate, and ultrasonic power). The process outputs studied include cutting force, MRR, and hole quality (in terms of chipping dimensions).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call