Abstract

Extremely high-speed-rate laser directed energy deposition has attracted considerable attention for large-scale industrial component manufacturing owing to its outstanding fabrication efficiency. However, interlayer metallurgical defects and thickness fluctuation stacking caused by the previous non-uniform rough surface layer hinder the preparation of customized thicknesses of large-scale components with high performance. Herein, an integrated extremely high-speed-rate additive manufacturing technology, that is, extremely high-speed-rate laser-directed energy deposition accompanied by extremely high-speed-rate laser remelting, is proposed to eliminate porosity and reconstruct the microstructure of multilayer parts. The remelted specimens exhibited uniform roughness and ultrafine grains when defocusing amount was less than zero. The relatively lower temperature gradient G and morphology factor G/R in the remelting process led to more favorable subcooling, which further promoted more nucleation sites and contributed to grain refinement and columnar-to-equiaxed transition. A multilayer 316 L stainless steel material with an interlayer remelting treatment was further prepared, and a typical heterogeneous structure dominated by ultrafine equiaxed grains was obtained. The multilayer specimen characterized by such a special structure exhibited a higher yield strength of 546 MPa, along with a ductility of 49.1 %. This novel integrated manufacturing technology highlights a new strategy that can expand the extremely high-speed-rate additive manufacturing window and achieve simultaneous improvements in the manufacturing efficiency and performance of large-scale components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call