Abstract

A rotary resonance echo double resonance (R-REDOR) experiment is described for measuring heteronuclear dipolar coupling under magic-angle spinning. Rotary resonance reintroduces both dipolar coupling and chemical shift anisotropy with an rf field matching the spinning frequency. The resonance effect from chemical shift anisotropy can be refocused with a rotary resonance echo. The R-REDOR experiment thus measures the dephasing of the rotary resonance echo from the heteronuclear dipolar coupling to determine the dipolar coupling constant. The rotary resonance experiment is suitable for measuring dipolar coupling with quadrupolar nuclei because it applies the recoupling rf only to the observed spin-1/2. The rotary resonance scheme has the advantages of a long T 2 ′ and susceptible to spinning frequency fluctuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call