Abstract

Let R be a ring, S a strictly ordered monoid, and ω : S → End (R) a monoid homomorphism. The skew generalized power series ring R[[S, ω]] is a common generalization of (skew) polynomial rings, (skew) Laurent polynomial rings, (skew) power series rings, (skew) Laurent series rings, (skew) monoid rings, (skew) Mal'cev–Neumann series rings, and generalized power series rings. We characterize those subsets T of S for which the cut-off operator with respect to T is a Rota–Baxter operator on the ring R[[S, ω]]. The obtained results provide a large class of noncommutative Rota–Baxter algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.