Abstract

Let R be a ring, and let S be a strictly ordered monoid. The generalized power series ring R[[S]] is a common generalization of polynomial rings, Laurent polynomial rings, power series rings, Laurent series rings, Mal'cev–Neumann series rings, monoid rings and group rings. In this paper, we examine which conditions on R and S are necessary and which are sufficient for the generalized power series ring R[[S]] to be semilocal right Bézout or semilocal right distributive. In the case where S is a strictly totally ordered monoid we characterize generalized power series rings R[[S]] that are semilocal right distributive or semilocal right Bézout (the latter under the additional assumption that S is not a group).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.