Abstract
AbstractRossby wave packets (RWPs) are Rossby waves for which the amplitude has a local maximum and decays to smaller values at larger distances. This review focuses on upper-tropospheric transient RWPs along the midlatitude jet stream. Their central characteristic is the propagation in the zonal direction as well as the transfer of wave energy from one individual trough or ridge to its downstream neighbor, a process called “downstream development.” These RWPs sometimes act as long-range precursors to extreme weather and presumably have an influence on the predictability of midlatitude weather systems. The paper reviews research progress in this area with an emphasis on developments during the last 15 years. The current state of knowledge is summarized including a discussion of the RWP life cycle as well as Rossby waveguides. Recent progress in the dynamical understanding of RWPs has been based, in part, on the development of diagnostic methods. These methods include algorithms to identify and track RWPs in an automated manner, which can be used to extract the climatological properties of RWPs. RWP dynamics have traditionally been investigated using the eddy kinetic energy framework; alternative approaches based on potential vorticity and wave activity fluxes are discussed and put into perspective with the more traditional approach. The different diagnostics are compared to each other and the strengths and weaknesses of individual methods are highlighted. A recurrent theme is the role of diabatic processes, which can be a source for forecast errors. Finally, the paper points to important open research questions and suggests avenues for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.