Abstract

AbstractWe examine the potential vorticity (PV) flux produced by forced Rossby waves in a two-layer quasigeostrophic model, using a perturbation analysis. Rossby waves are excited by external forcing applied to the upper layer. The southward PV flux is produced in the lower layer by the higher-order Rossby waves that are excited by nonlinear wave–wave interactions, whereas the northward PV flux is produced in the upper layer. The direction of the PV flux is consistent with that obtained by an eddy-resolving model of the wind-driven circulation in previous studies. The southward PV flux is produced in a wide parameter range comparable to the eddy-resolving model. The basic features of the PV flux remain unchanged even in the limit of weak stratification. In this limit, stratification has nearly no effect on the flow, except that it isolates the lower layer from the direct effects of external forcing. The mechanism of the southward PV flux is explained using basic features of the barotropic Rossby waves and does not depend on details of the model. Furthermore, the resonant triad interaction of Rossby waves does not affect the PV flux. Stratification weakens or strengthens the PV flux depending on the horizontal scale of the external forcing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call