Abstract

Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder which affects medium spiny GABAergic neurons mainly in the striatum. Oxidative damage, neuro-inflammation, apoptosis, protein aggregation, and signaling of neurotrophic factors are some of the common cellular pathways involved in HD. Quinolinic acid (QA) causes excitotoxicity by stimulating N-methyl-D-aspartate receptors via calcium overload leading to neurodegeneration. Neuroprotective potential of peroxisome proliferator activated receptor-γ (PPARγ) agonists and histone deacetylase (HDAC) inhibitors have been well documented in experimental models of neurodegenerative disorders; however, their exact mechanisms are not clear. Therefore, present study has been designed to explore possible neuroprotective mechanism of valproic acid (VPA) and its interaction with rosiglitazone against QA induced HD-like symptoms in rats. Single bilateral intrastriatal QA (200 nmol/2 μl saline) administration significantly caused motor incoordination, memory impairment, oxidative damage, mitochondrial dysfunction (complex I, II, II and IV), cellular alterations [tumor necrosis factor-alpha (TNF-α), caspase-3, brain derived neurotrophic factor, acetylcholinesterase], and striatal neurodegeneration as compared to sham group. Treatment with rosiglitazone (5, 10 mg/kg) and VPA (100, 200 mg/kg) for 21 days significantly attenuated these behavioral, biochemical, and cellular alterations as compared to control (QA 200 nmol) group. However, VPA (100 mg/kg) treatment in combination with rosiglitazone (5 mg/kg) for 21 days synergized their neuroprotective effect, which was significant as compared to their effects per se in QA-treated animals. The present study provides an evidence of possible interplay of PPARγ agonists and HDAC inhibitors as a novel therapeutic strategy in the management of HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.