Abstract

The most common mutation in cystic fibrosis (CF), F508del, causes defects in trafficking, channel gating and endocytosis of the CF transmembrane conductance regulator (CFTR) protein. Because CF is an orphan disease, therapeutic strategies aimed at improving mutant CFTR functions are needed to target the root cause of CF. Human CF airway epithelial cells were treated with roscovitine 100 μM for 2 h before CFTR maturation, expression and activity were examined. The mechanism of action of roscovitine was explored by recording the effect of depleting endoplasmic reticulum (ER) Ca(2+) on the F508del-CFTR/calnexin interaction and by measuring proteasome activity. Of the cyclin-dependent kinase (CDK) inhibitors investigated, roscovitine was found to restore the cell surface expression and defective channel function of F508del-CFTR in human CF airway epithelial cells. Neither olomoucine nor (S)-CR8, two very efficient CDK inhibitors, corrected F508del-CFTR trafficking demonstrating that the correcting effect of roscovitine was independent of CDK inhibition. Competition studies with inhibitors of the ER quality control (ERQC) indicated that roscovitine acts on the calnexin pathway and on the degradation machinery. Roscovitine was shown (i) to partially inhibit the interaction between F508del-CFTR and calnexin by depleting ER Ca(2+) and (ii) to directly inhibit the proteasome activity in a Ca(2+) -independent manner. Roscovitine is able to correct the defective function of F508del-CFTR by preventing the ability of the ERQC to interact with and degrade F508del-CFTR via two synergistic but CDK-independent mechanisms. Roscovitine has potential as a pharmacological therapy for CF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call