Abstract
SummaryThorax fusion occurs in the midline of the Drosophila pupal notum and involves epithelial cell delamination requiring apoptotic signaling. By genetic screening, we found that NADPH oxidases (Nox and Duox) associated with superoxide anion (O˙-2) are responsible for caspase-3 activation and delamination. We observed that Nox is upregulated in cells that undergo delamination and that delamination depends on caspase activation. However, the cell morphology and the almost complete lack of propidium iodide incorporation suggested little membrane disruption and signified apoptotic modulation. These results demonstrate that most delaminating cells undergo caspase activation, but this activation is not sufficient for apoptosis. We showed that the expression of Catalase, encoding an H2O2 scavenger in the cytosol, increases delamination and induces apoptotic nuclear fragmentation in caspase-3-activated cells. These findings suggest that the roles of O˙-2 and intracellular H2O2 for delamination differs before and after caspase-3 activation, which involves live cell delamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.