Abstract

Titanium dioxide nanoparticles (TiO 2 NPs) are among the top five NPs used in consumer products, paints and pharmaceutical preparations. Since, exposure to such nanoparticles is mainly through the skin and inhalation, the present study was conducted in the human epidermal cells (A431). A mild cytotoxic response of TiO 2 NPs was observed as evident by the MTT and NR uptake assays after 48 h of exposure. However, a statistically significant ( p < 0.05) induction in the DNA damage was observed by the Fpg-modified Comet assay in cells exposed to 0.8 μg/ml TiO 2 NPs (2.20 ± 0.26 vs. control 1.24 ± 0.04) and higher concentrations for 6 h. A significant ( p < 0.05) induction in micronucleus formation was also observed at the above concentration (14.67 ± 1.20 vs. control 9.33 ± 1.00). TiO 2 NPs elicited a significant ( p < 0.05) reduction in glutathione (15.76%) with a concomitant increase in lipid hydroperoxide (60.51%; p < 0.05) and reactive oxygen species (ROS) generation (49.2%; p < 0.05) after 6 h exposure. Our data demonstrate that TiO 2 NPs have a mild cytotoxic potential. However, they induce ROS and oxidative stress leading to oxidative DNA damage and micronucleus formation, a probable mechanism of genotoxicity. This is perhaps the first study on human skin cells demonstrating the cytotoxic and genotoxic potential of TiO 2 NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.