Abstract

We present analyses of macroscopic and microscopic remains as a tool to characterise sedge fen peats. We use it to describe peat composition and stages of peat decomposition, to assess the success of rewetting of a formerly drained fen, and to understand the workings of these novel ecosystems. We studied two percolation fen sites, one drained and one drained and rewetted 20 years ago. Years of deep drainage have resulted in a layer of strongly decomposed peat which lacks recognizable macro-remains. We could associate micro-remains with macro-remains, and thus still characterise the peat and the plants that once formed it. We show that the strongly decomposed peat is of the same origin as the slightly decomposed peat below, and that is was ploughed. We present descriptions of eight types of the main constituent of sedge peat: plant roots, including Carex rostrata type, C. lasiocarpa/rostrata type, C. limosa type, C. acutiformis type, C. echinata type, Phragmites australis type, Cladium type, Equisetum type. We describe three new non-pollen palynomorph types (microscopic remains) and five new subtypes. The rewetted fen provides insights into plant succession after rewetting and the formation of peat that predominantly consists of roots. Results indicate that leaf sheaths may be a consistent component of the peat.

Highlights

  • Peatlands cover large stretches of land in the boreal and nemoral zones of the Earth [1]

  • There is a fundamental difference between moss peat and peat formed by herbaceous plants

  • The peat of herbaceous plants consists mainly of roots and rhizomes and the new material is added at some depth in an existing, older matrix

Read more

Summary

Introduction

Peatlands cover large stretches of land in the boreal and nemoral zones of the Earth [1] Large parts of these peatlands are fens (i.e., minerotrophic mires) that receive rainwater, and water that has been in contact with the mineral soil or bedrock. Fens are commonly characterized by a dominant graminoid vegetation [2] Their peat deposits contain, in varying proportions, mosses, roots and rhizomes of herbaceous plants and amorphous organic material or detritus. The peat of herbaceous plants consists mainly of roots and rhizomes and the new material is added at some depth in an existing, older matrix. This latter type of peat is called displacement peat [3,4]. Displacement peats are always associated with differing ages of individual components at the same depth, making them inherently more difficult to analyse and less studied than simpler moss peats

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.