Abstract

Root architecture of tree species was investigated at two different altitudes in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow soils, while slope angles of both sites were comparable (20–50� ). Three tree species typical for the montane forest at 1900 m (Graffenrieda emarginata (Ruiz & Pav.) Triana (Melastomataceae), Clethra revoluta (Ruiz & Pav.) Spreng. (Clethraceae), Vismia tomentosa Ruiz & Pav. (Clusiaceae)) and for the elfin forest at 3000 m (Weinmannia loxensis Harling (Cunoniaceae), Clusia spec. (Clusiacaea) Styrax foveolaria Perkins (Styraceae)) were examined. At 1900 m, 92% of the trees grew upright, in comparison to 52% at 3000 m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all trees with tap roots or with shoots connected by coarse rhizomes, 83% of the trees with stilt roots, and 50% of the trees in which stems or roots were supported by other trees grew upright, suggesting that these characteristics were relevant for tree stability. Root system morphology differed markedly between altitudes. In contrast to 1900 m, where 20% of structural roots originated in the deeper mineral soil, root origin at 3000 m was restricted to the forest floor. The mean ratio of root cross sectional area to tree height decreased significantly from 6.1 � 10 )3 m 2 m )1 at 1900 m to 3.2 � 10 )3 m 2 m )1 at 3000 m. The extent of root asymmetry increased significantly from 0.29 at 1900 m to 0.62 at 3000 m. This was accompanied by a significantly lower number of dominant roots at 3000 m (2.3 compared to 3.8 at 1900 m). In conclusion, native tree species growing in tropical montane and elfin forests show a variety of root traits that improve tree stability. Root system asymmetry is less important for tree stability where anchorage is provided by a deep and solid root–soil plate. When deep rooting is impeded, root traits improving the horizontal extension of the root–soil plate are more pronounced or occur more frequently. Furthermore, mutual mechanical support of roots and stems of neighboring trees seems to be an appropriate mechanism to provide anchorage in soils with low bulk density and in environments with high wind speeds. Abbreviations: AR – aspect ratio; CSA – cross sectional area; DBH – diameter at breast height; ZRT – zone of rapid taper

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call