Abstract

We consider the transceiver design for multiple-input-multiple-output (MIMO) systems when the channel state information (CSI) is available at the transmitter as well as the receiver. First, we propose an open-loop low-complexity MIMO spatial multiplexing scheme based on the energy spreading transform (EST-SM). The EST-SM can spatially multiplex multiple data streams and iteratively detect the data streams with almost negligible interstream interference at sufficiently high SNR. Then, we propose a closed-loop precoding scheme suitable for the EST-SM called root mean square decomposition (RMSD) scheme. The RMSD precoding scheme combined with the EST-SM decomposes a MIMO channel into multiple subchannels with identical SNRs. This desired property minimizes bit error rate (BER) when different bit allocations on different subchannels, which cause a significant increase in system complexity, are not used. We show that when the EST-SM is used the RMSD scheme is optimal in BER performance and it achieves full diversity. Simulation results show that the RMSD scheme outperforms other existing techniques such as the geometric mean decomposition (GMD) scheme (Jiang , IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3791-3803) and the uniform channel decomposition (UCD) scheme1 (Jiang , IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4283-4294) in BER performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.