Abstract

Colonisation by root endophytes can be beneficial to plants growing on acid, nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi can supply herbs with nutrients and may give protection against aluminium toxicity. Two other root colonising fungi, fine endophytes (FE) and dark septate fungi (DSE), are less well known but are potentially of benefit to their host plant. AM fungi are the most prevalent symbionts in herbs at neutral to acidic soil pH. At extremely low pH, fungal growth can be limited and AM colonisation is usually rare. Fine and dark septate endophytes, on the other hand, have been observed more often under these conditions. In order to relate endophyte colonisation to a gradient in soil pH, we investigated root colonisation by AM, FE and DSE in Maianthemum bifolium, Galium odoratum, Mercurialis perennis and Stellaria nemorum, from a range of acidic beech forests. With decreasing pH, colonisation by AM decreased, whereas the other two endophytes increased. AM and FE colonisation were inversely correlated in Maianthemum bifolium. We compared changes in root colonisation with those in chemical composition of soil and leaf samples and found a positive correlation between leaf magnesium concentrations and the presence of DSE in Galium odoratum. Aluminium concentration in Maianthemum bifolium tended to be lower when FE colonisation was high, suggesting a possible role for the fungi in plant protection against Al. We suggest that FE and DSE may replace AM fungi in herbaceous vegetation at extremely low pH, counteracting some of the negative effects of high soil acidity on plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.