Abstract
Information systems play a crucial role in most of today’s business operations. High availability and reliability of services and hardware, and, in the case of outages, short response times are essential. Thus, a high amount of tool support and automation in risk management is desirable to decrease downtime.We propose a new approach for calculating the root cause for an observed failure in an IT infrastructure. Our approach is based on abduction in Markov Logic Networks. Abduction aims to find an explanation for a given observation in the light of some background knowledge. In failure diagnosis, the explanation corresponds to the root cause, the observation to the failure of a component, and the background knowledge to the dependency graph extended by potential risks. We apply a method to extend a Markov Logic Network in order to conduct abductive reasoning, which is not naturally supported in this formalism.Our approach exhibits a high amount of reusability and facilitates modeling by using ontologies as background knowledge. This enables users without specific knowledge of a concrete infrastructure to gain viable insights in the case of an incident. We implemented the method in a tool and illustrate its suitability for root cause analysis by applying it to a sample scenario and testing its scalability on randomly generated infrastructures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have