Abstract

The microbiome derived from soil associated with plant roots help in plant growth and stress resistance. It exhibits potential benefits for soil remediation and restoration of radioactive-cesium (137Cs)-contaminated soils. However, there is still limited information about the community and diversity of root-associated microbiome in 137Cs-contaminated soil after the Fukushima-Daiichi Nuclear Power Plant (FDNPP) disaster. To address this, a comparative analysis of communities and diversity of root-associated microbiomes was conducted in two field types after the FDNPP disaster. In 2013, we investigated the community and diversity of indigenous root-associated microbiome of napiergrass (Pennisetum purpureum) grown in both grassland and paddy fields of 137Cs-contaminated land-use type within a 30-km radius around the FDNPP. Results showed that the root-associated bacterial communities in napiergrass belonged to 32 phyla, 75 classes, 174 orders, 284 families, and 521 genera, whereas the root-associated fungal communities belonged to 5 phyla, 11 classes, 31 orders, 59 families, and 64 genera. The most frequently observed phylum in both grassland and paddy field was Proteobacteria (47.4% and 55.9%, respectively), followed by Actinobacteriota (23.8% and 27.9%, respectively) and Bacteroidota (10.1% and 11.3%, respectively). The dominant fungal phylum observed in both grassland and paddy field was Basidiomycota (75.9% and 94.2%, respectively), followed by Ascomycota (24.0% and 5.8%, respectively). Land-use type significantly affected the bacterial and fungal communities that colonize the roots of napiergrass. Several 137Cs-tolerant bacterial and fungal taxa were also identified, which may be potentially applied for the phytoremediation of 137Cs-contaminated areas around FDNPP. These findings contribute to a better understanding of the distribution of microbial communities in 137Cs-contaminated lands and their long-term ecosystem benefits for phytoremediation efforts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.