Abstract

Room-temperature atomic layer deposition (RT-ALD) of iron oxide is developed with a precursor of bis(N, N′-diisopropyl-propionamidinate)iron [(DIPPA)2Fe] and plasma excited humidified Ar. Saturated conditions of (DIPPA)2Fe and plasma excited humidified Ar exposures at room temperature (23–25 °C) are investigated by in situ IR absorption spectroscopy for finding the RT-ALD process condition. Using the designated process, the growth per cycle of the iron oxide RT-ALD is confirmed as 0.15 nm/cycle based on the film thicknesses measured by the spectroscopic ellipsometer. The x-ray photoelectron spectroscopy suggests that the stoichiometry of the deposited iron oxide is closed to that of Fe2O3. The grown film is composed of partly crystallized iron oxides, confirmed by cross-sectional TEM and AFM. The RT deposited iron oxide exhibits a magnetic volume susceptibility of 1.52, which implies the applicability of the present coating for magnetic drug delivery. We discuss the surface reaction with the IR absorption spectroscopy and the quartz crystal microbalance. The (DIPPA)2Fe molecule is suggested to adsorb on the Fe2O3 surface with mixed first- and second-order reactions at RT. It is also suggested that amidinate ligands in (DIPPA)2Fe are released in the course of the adsorption and the remaining ligands are oxidized by the plasma excited humidified Ar. The RT iron oxide deposition is demonstrated, and the reaction mechanism of room-temperature ALD is discussed in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.