Abstract

We demonstrate room temperature optically and electrically controllable group delay using population oscillation in a quantum-dot (QD) semiconductor optical amplifier (SOA). A reduction of the group index up to 10% with a bandwidth of 13 GHz is achieved under different configurations of injection current and optical pump intensity. Our theoretical results based on population pulsation agree well with experimental data. We extract the linewidth enhancement factor and effective carrier diffusion coefficient of the QD SOA. We also observe slow light when the injection current is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.