Abstract

Atomic defects in monolayer transition metal dichalcogenides (TMDs) such as chalcogen vacancies significantly affect their properties. In this work, we provide a reproducible and facile strategy to rationally induce chalcogen vacancies in monolayer MoS2 by annealing at 600 °C in an argon/hydrogen (95%/5%) atmosphere. Synchrotron X-ray photoelectron spectroscopy shows that a Mo 3d5/2 core peak at 230.1 eV emerges in the annealed MoS2 associated with nonstoichiometric MoSx (0 < x < 2), and Raman spectroscopy shows an enhancement of the ∼380 cm-1 peak that is attributed to sulfur vacancies. At sulfur vacancy densities of ∼1.8 × 1014 cm-2, we observe a defect peak at ∼1.72 eV (referred to as LXD) at room temperature in the photoluminescence (PL) spectrum. The LXD peak is attributed to excitons trapped at defect-induced in-gap states and is typically observed only at low temperatures (≤77 K). Time-resolved PL measurements reveal that the lifetime of defect-mediated LXD emission is longer than that of band edge excitons, both at room and low temperatures (∼2.44 ns at 8 K). The LXD peak can be suppressed by annealing the defective MoS2 in sulfur vapor, which indicates that it is possible to passivate the vacancies. Our results provide insights into how excitonic and defect-mediated PL emissions in MoS2 are influenced by sulfur vacancies at room and low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call