Abstract

In this paper, ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method, and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated. The experimental results show that the gas sensor has good repeatability, high response rate, short response, and recovery time at room temperature (25 °C). The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%, with a response time and recovery time are 0.3 s and 0.7 s respectively. As a contrast, the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate. Therefore, ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics, which provides a feasible method of developing the high performance ZnO-based gas sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.