Abstract

The designed nanocomposite film of self-assembled 2D Ag-doped CuO:SnO2 nanoflakes have been successfully synthesized through facile one-step hydrothermal technique. The fabricated sensor film is developed to detect liquefied petroleum gas (LPG) at room temperature. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and UV–visible spectroscopy comprehensively characterize the film's microstructure, morphology, element composition, and optical properties. The LPG sensing outcomes reveal that the Ag-doped CuO:SnO2 film based sensor exhibits exceptional response and excellent repeatability towards LPG at room temperature. This is predominantly due to formation of CuO: SnO2 interface, sensitized by doping silver (Ag) that drastically increases the carrier concentration of the NC sensor film and provides superior ability to detect LPG across a range of concentrations at room temperature. The sensor response increases from 300 % for 0.5 vol% LPG to a maximum of 414 % at 2.0 vol%. Notably, the sensor demonstrates fast response and recovery times (21 s and 30 s for 0.5 vol% LPG). These promising attributes position the NC sensor film as a strong candidate for real-world LPG sensing applications. Additionally, the research proposes a comprehensive mechanism explaining the NC sensor film's detection performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.