Abstract

Graphite surfaces were bombarded with Ne +, Ar + and Xe + ions at 450 eV–1 keV to induce the carbon nanofiber (CNF) growth at room temperature, and the dependence of size and numerical density of ion-induced CNFs on the ion species and ion energy was investigated in detail. The ion-sputtered surfaces were covered with densely distributed conical protrusions and aligned CNFs grew on the tips, except for the low-energy Xe +-sputtered surfaces. Longer CNFs grew by lighter-mass-ion irradiation, and finer CNFs formed by heavier-mass-ion bombardment. In addition, the higher the ion energy, the longer the length of the ion-induced CNFs. Because the size and numerical density were controllable by the ion-irradiation parameters, ion-induced CNFs were believed to be quite promising for myriad of applications such as high-resolution scanning probe microscope cantilevers, bio-cell manipulators and field emission source operating at low voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.