Abstract

Graphite surfaces were bombarded with oblique Ar+ ions at 1 keV to induce the carbon nanofiber (CNF) growth at room temperature and at high temperature (300 °C), and their dependence of length, diameter and number density on ion-incidence angle and sputtering rate was investigated in detail. The sputtered surface ion-irradiated at normal incidence produced huge cones and rod-like structures. It was found that some of the cones possessed the non-aligned thick carbon fibers on the top. By contrast, obliquely ion-irradiation induced the formation of densely distributed CNF-tipped cones. The higher ion-incidence angle produced CNF of smaller diameter and high fabrication temperature favors the formation of longer fiber with higher numerical density. In addition, the number density of the CNF-tipped cones strongly depended upon the ion-incidence angle rather than the sputtering rate. Thus, the diameter, length and number density of CNFs were strongly dependent upon the ion-irradiation parameters. It is believed that myriad of applications is possible with ion-induced CNFs by selecting the suitable ion-irradiation parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.