Abstract
Inverse Heusler alloys possessing spin gapless semiconducting behavior have drawn great curiosity among researchers in the past few months on account of their unique transport characteristics that can be put into use in spin based electronic device implementations. Thin films of a possible ternary spin gapless semiconductor Mn2CoSi (MCS) inverse Heusler alloy have been deposited on a p-Si (100) substrate using the electron beam physical vapor deposition technique. The as-grown films exhibit a polycrystalline nature having a uniform and smooth surface with full coverage. A magnetic study reveals that the film is ferromagnetically soft along the direction parallel to its plane and its Curie temperature (TC) is much higher than room temperature (300 K). The formation of the MCS/SiO2/p-Si heterostructure is confirmed from cross-sectional transmission electron microscopy and cross-sectional scanning electron microscopy studies. The electronic- and magneto-transport properties of the heterostructure have been studied at various isothermal conditions. From current–voltage characteristics, a conventional magnetic diode like behavior has been observed throughout the working temperature regime of 78–300 K. The temperature coefficient of resistance (TCR) value of the film is estimated to be –2.09 × 10−9 Ω m/K, which is similar to the TCR values of reported spin gapless semiconductors. Room temperature spin injection and detection in a nonmagnetic semiconductor (p-Si) has been carried out using the three-terminal Hanle device in our MCS/SiO2/p-Si heterostructure. The estimated values of spin lifetime (78 ps) and spin diffusion length (167 nm) of the injected carriers at room temperature provide an indication of their industrial importance in future spin based electronic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.