Abstract

Integrated electro-optical switches are essential as one of the fundamental elements in the development of modern optoelectronics. As an architecture for photonic systems exciton polaritons, hybrid bosonic quasiparticles that possess unique properties derived from both excitons and photons, have shown much promise. For this system, we demonstrate a significant improvement of emitted intensity and condensation threshold by applying an electric field to a microcavity filled with an organic microbelt. Our theoretical investigations indicate that the electric field makes the excitons dipolar and induces an enhancement of the exciton-polariton interaction and of the polariton lifetime. Based on these electric field-induced changes, a sub-nanosecond electrical field-enhanced polariton condensate switch is realized at room temperature, providing the basis for developing an on-chip integrated photonic device in the strong light-matter coupling regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.