Abstract

The development and physical understanding of high-beta nanolasers operating in regime of cavity-quantum-electrodynamics (cQED) is a highly interdisciplinary field of research, involving important aspects of nanotechnology, quantum optics, and semiconductor physics. Of particular interest is the quantum limit of operation, in which a few or even a single emitter act as gain material. The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cQED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. Based on an analytic approach, we provide a generalized criterion for strong coupling and the corresponding emission spectrum that includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a state-of-the-art few-emitter quantum-dot (QD)–micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model [1]. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved. By using a master-equation approach for up to 8 QDs coupled to the mode, we provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions by identifying signatures in the mean-photon number, the photon-autocorrelation function, and the emission linewidth. [1] C. Gies et al., accepted for publication in PRA, arxiv:1606.05591

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.