Abstract

The paper represents storage modulus and internal friction modulation upon cyclic loading of Zr61Cu27Fe2Al10 bulk metallic glassy samples within quasi‐reversible deformation regime. The structure of the samples was studied by X‐ray diffraction and transmission electron microscopy including high‐resolution imaging and selected‐area electron diffraction. It is found that kinetically frozen anelastic deformation accumulates on mechanical cycling at room temperature and causes an increase in the storage modulus and even nanocrystallization of a metallic glassy phase after a certain number of cycles. The study has shown that even a minor cyclic deformation in an elastic region can lead to the changes the atomic structure and in turn affect the elastic modulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.