Abstract

Inspired by the activities of P-450 enzyme and Rieske oxygenases in nature, in which the high-valent Fe-oxo complexes play a key role for oxidation of alkanes, the oxidation process of methane by the high-valent iron oxide cation [FeO2]+ has been explored by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously reported [FeO]+/CH4 and [Fe(O)OH]+/CH4 systems, which afford [FeOH]+ as the main product, the generation of Fe+ dominates the reaction of [FeO2]+ with CH4. Theoretical calculations suggest a novel "oxygen rebound" pathway for the liberation of methanediol. In particular, the inevitable valence increase of Fe prior to C-H activation is similar to the cytochrome P-450 mediated processes. To our best knowledge, this study provides the first example of methane activation by the high-valent Fe(V)-oxo species in the gas phase, which may thus bridge the gas-phase model and the condensed-phase biosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call