Abstract

Manipulation of solid-state spin coherence is an important paradigm for quantum information processing. Current systems either operate at very low temperatures or are difficult to scale up. Developing low-cost, scalable materials whose spins can be coherently manipulated at room temperature is thus highly attractive for a sustainable future of quantum information science. Here we report ambient-condition all-optical initialization, manipulation and readout of hole spins in an ensemble of solution-grown CsPbBr3 perovskite quantum dots with a single hole in each dot. The hole spins are initialized by sub-picosecond electron scavenging following circularly polarized femtosecond-pulse excitation. A transverse magnetic field induces spin precession, and a second off-resonance femtosecond-pulse coherently rotates hole spins via strong light-matter interaction. These operations accomplish near-complete quantum-state control, with a coherent rotation angle close to the π radian, of hole spins at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.