Abstract

A new non-pillar mining technology, gob-side entry retaining by roof cutting (GERRC), different from the conventional gob-side entry retaining formed by a roadside filling support, is introduced in this study. In the new technology, roof cutting is conducted so that the roof plate forms a short cantilever beam structure within a certain range above the retained entry, thus changing the stress boundary condition of the roof structure. To explore the deformation characteristics of the roof under this special condition, a short cantilever beam mechanical model was established and solved using energy theory and displacement variational methods. Meanwhile, a theoretical and analytical control solution for roof deformation was obtained and verified via field-measured results. Based on the aforementioned calculation, the relationship between the roof deformation and main influence parameters was explored. It was concluded that the rotation of the upper main roof and width of the retained entry had the most significant impacts on roof deformation. Bolt and cable support and temporary support in the entry had a non-obvious influence on the roof deformation and could not prevent the given deformation that was caused by the rotation of the upper main roof. Based on comprehensive theoretical analysis and calculation results, ideas and countermeasures to control short cantilever roof deformation—that is, designing a reasonable height of roof cutting and a controlled width of retaining entry—were proposed and tested. Field monitoring shows that the entry control effects were satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.