Abstract

Integrated circuits (ICs) are becoming increasingly vulnerable to malicious alterations, referred to as hardware Trojans. Detection of these inclusions is of utmost importance, as they may potentially be inserted into ICs bound for military, financial, or other critical applications. A novel on-chip structure including a ring oscillator network (RON), distributed across the entire chip, is proposed to verify whether the chip is Trojan-free. This structure effectively eliminates the issue of measurement noise, localizes the measurement of dynamic power, and additionally compensates for the impact of process variations. Combined with statistical data analysis, the separation of process variations from the Trojan contribution to the circuit's transient power is made possible. Simulation results featuring Trojans inserted into a benchmark circuit using 90nm technology and experimental results on Xilinx Spartan-3E FPGA demonstrate the efficiency and scalability of the RON architecture for Trojan detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.