Abstract

The rollback mechanism is critical in crash recovery and debugging, but its security problems have not been adequately addressed. This is justified by the fact that existing solutions always require modifications on target software or only work for specific scenarios. As a consequence, rollback is either neglected or restricted or prohibited in existing systems. In this paper, we systematically characterize security threats of rollback as abnormal states of non-deterministic variables and resumed program points caused by rollback. Based on this, we propose RollSec (for Rollback Security), which provides general measurements including state extracting, recording, and compensating, to maintain correctness of these abnormal states for eliminating rollback threats. RollSec can automatically extract these states based on language-independent information of software as protection targets, which will be monitored during run-time, and compensated to correct states on each rollback without requiring extra modifications or supports of specific architectures. At last, we implement a prototype of RollSec to verify its effectiveness, and conduct performance evaluations which demonstrate that only acceptable overhead is introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.