Abstract

The widespread use of synthetic insecticides results in insecticide-resistant populations of maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), a primary pest species of stored corn worldwide. Thus, new active ingredients with different modes of action are needed for integrated pest management (IPM) of stored grains. Thus, toxicological bioassays (using S. zeamais as bioindicator) associated to chromatographic techniques were performed to isolate insecticidal compounds from the grain-protective ethanolic extract of Annona mucosa Jacq. (Annonaceae) seeds. The acetogenin bis-tetrahydrofuran rolliniastatin-1 was identified as major bioactive constituent from A. mucosa seeds based on bioassay-guided fractionation, along with rolliniastatin-2, deethylrollinastatin-1, jimenezin and fractions containing triglycerides. This compound produced 51.1% of mortality of adult weevils when applied at 57.66 mg kg−1, drastically reducing F1 progeny and their damage to corn grains. Although the acute toxicity level was lower than that with the formulation based on diatomaceous earth at a concentration 17.3 times higher (Insecto®, at recommended rate) used as a positive control, rolliniastatin-1 protected grain statistically similar to that of the positive control. Furthermore, bioassays indicate that compounds of different chemical natures have a synergistic effect on the overall biological activity of seed derivatives of A. mucosa. Efficacy and technical viability of the process to obtain rolliniastatin-1 from the seeds of A. mucosa should allow the production of a botanical insecticide to control populations of S. zeamais at corn warehouses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.