Abstract

Molecular dynamics simulation examines how the polishing tool's rotating velocity and axes affect surface nanotribological properties and material removal mechanism of patterned gallium nitride (GaN) substrates. Frictional coefficient and average contact area affect material removal rate (MRR) variance. Rotating speed increases the frictional coefficient and contact area, elevating MRR. Anticlockwise abrasives have substantially higher root-mean-square roughness (RMS) than clockwise ones. After polishing, increasing the rotating angle increases the frictional coefficient, average contact area, MRR, and RMS. MRR enhancement is maximum at −15 rad/ns, the only spinning velocity that improves MRR. RMS improvement ratio is highest when the polishing tool spins clockwise or the rotational axis orientation is lowered. Particularly, the MRR and RMS improvements after the polishing process can reach 103.8 % and 223.5 %, respectively. These findings help explain atomic-scale GaN-based material removal and deformation with frictional resistance and erosion by polishing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.