Abstract
Due to the gear meshing vibration and noise, the fault signal of the rolling element bearing is relatively weak, which makes the fault signal separation and feature extraction difficult. A rolling bearing fault diagnosis method based on maximum overlapping discrete wavelet packet transform (MODWPT) and maximum correlation kurtosis deconvolution (MCKD) was proposed. Bearing fault signal was decomposed by using MODWPT method into some components with different frequency band. It realized the separation of gear meshing signal and bearing fault signal. Based on then the kurtosis criterion, component with large kurtosis was selected to filter with maximum correlation kurtosis deconvolution (MCKD) method, which revealed the bearing fault feature. Finally, the filtered signal is analyzed with envelope demodulation, and the bearing weak fault feature was extracted from the original fault signal in order to realize the bearing defect detection and diagnosis. Simulation and experiment verify the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.