Abstract

The compound fault acoustic signal of a rolling bearing has the characteristics of a varying noise mixture, a low signal-to-noise ratio (SNR), and nonlinearity, which makes it difficult to separate and extract exactly the fault features of compound fault signals. A fault feature extraction approach combining adaptive variational modal decomposition (AVMD) and improved multiverse optimization (IMVO) algorithm parameterized maximum correlated kurtosis deconvolution (MCKD)—named AVMD-IMVO-MCKD—is proposed. In order to adaptively select the parameters of VMD and MCKD, an adaptive optimization method of VMD is proposed, and an improved multiverse optimization (IMVO) algorithm is proposed to determine the parameters of MCKD. Firstly, the acoustic signal of bearing compound faults is decomposed by AVMD to generate several modal components, and the optimal modal component is selected as the reconstruction signal depending on the minimum information entropy of the modal components. Secondly, IMVO is utilized to select the parameters of MCKD, and then MCKD processing is performed on the reconstructed signal. Finally, the compound fault features of the bearing are extracted by the envelope spectrum. Both simulation analysis and acoustic signal experimental data analysis show that the proposed approach can efficiently extract the acoustic signal fault features of bearing compound faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.