Abstract
The penalty parameter (c) and kernel parameter (g) contained in Support Vector Machine (SVM) cannot be adaptively selected according to actual samples, which results in low classification accuracy and slow convergence speed. A novel sparrow search algorithm was used to optimize the parameters of SVM classifier. Firstly, an improved ensemble empirical mode decomposition (MEEMD) method was used to decompose non-stationary and nonlinear vibration signals, and the eigenmode function (IMF) was obtained by removing abnormal signals from the original signals through permutation entropy, and the sample entropy was extracted. Finally, a fault diagnosis model based on SSA-SVM is constructed, and the high recognition rate and effectiveness of this method are proved by simulation and experimental data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.