Abstract

For the sake of solving the problem of the difficulty of extracting fault features under the background of noise and accurately identify the state of the bearing, a compound fault diagnosis method of rolling bearing based on parameter optimization maximum correlated kurtosis deconvolution (MCKD) and convolutional neural network (CNN) is proposed. First, the adaptive multi-strategy cuckoo search algorithm (MSACS) is used to iteratively optimize the important parameters of MCKD. Second, the optimized MCKD is used to filter and denoise the rolling bearing fault signal, and the denoised signal is obtained. Finally, the denoised signal is input to the CNN model for training and testing to obtain the classification result of fault diagnosis. Through the test and evaluation of the fault dataset, the proposed method is compared with particle swarm optimization (PSO) parameter optimization method (PSO-MCKD-CNN) and CNN method without noise reduction. At the same time, it is compared with other advanced methods. The experimental results shows that this method improves the diagnostic performance of the neural network, obtains higher diagnostic accuracy, and is more conducive to the detection of compound faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.