7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1109/tim.2022.3159005
Copy DOIPublication Date: Jan 1, 2022 | |
Citations: 107 |
The effective separation of fault characteristic components is the core of compound fault diagnosis of rolling bearings. The intelligent optimization algorithm has better global optimization performance and fast convergence speed. Aiming at the problem of poor diagnosis effect caused by mutual interference between multiple fault responses, a novel compound fault diagnosis method based on optimized maximum correlation kurtosis deconvolution (MCKD) and sparse representation, namely MDSRCFD, is proposed in this article. For the MCKD, because it is very difficult to set reasonable parameter combination values, artificial fish school (AFS) with global search capability and strong robustness is fully utilized to optimize the key parameters of MCKD to achieve the best deconvolution and fault feature separation. Aiming at the problem that orthogonal matching pursuit (OMP) is difficult to be solved in sparse representation, an artificial bee colony (ABC) with global optimization ability and faster convergence speed is employed to solve OMP to obtain the approximate best atom and realize the reconstruction of signal transient components. The envelope demodulation analysis method is applied to realize feature extraction and fault diagnosis. The simulation and practical application results show that the proposed MDSRCFD can effectively separate and extract the compound fault characteristics of rolling bearings, which can realize the accurate compound fault diagnosis.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.