Abstract
Flexible batteries with large energy densities, lightweight nature, and high mechanical strength are considered as an eager goal for portable electronics. Herein, we first propose free-standing graphene fiber electrodes containing roller-like orientated spore carbon spheres via rheological engineering. With the help of the orientated microfluidic cospinning technology and the plasma reduction method, spore carbon spheres are self-assembled and orientedly dispersed into numerous graphene flakes, forming graphene fiber electrodes enriched with internal rolling woven structures, which cannot only enhance the electrical contact between active materials but also effectively improve the mechanical strength and structure stability of graphene fiber electrodes. When the designed graphene fibers are combined with the active sulfur cathode and lithium metal anode, the assembled flexible lithium sulfur batteries possess superior electrochemical performance with high capacity (>1000 mA h g-1) and excellent cycling life as well as good mechanical properties. According to density functional theory and COMSOL simulations, the roller-like spore carbon sphere-orientated graphene fiber hosts provide reinforced trapping-catalytic-conversion behavior to soluble polysulfides and nucleation active sites to lithium metal, thus synergistically suppressing the shuttle effect of polysulfides at the cathode side and lithium dendrite growth at the anode side, thereby boosting the whole electrochemical properties of lithium sulfur batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.