Abstract

This study aimed to investigate the effects of rolipram, a phosphodiesterase inhibitor, on brain tissue regeneration. Trimethyltin-injected mice, an animal model of hippocampal tissue regeneration, was created by a single injection of trimethyltin chloride (2.2 mg/kg, intraperitoneally). Daily rolipram administration (10 mg/kg, intraperitoneally) was performed from the day after trimethyltin injection until the day before sampling. In Experiment 1, brain samples were collected on day 7 postinjection of trimethyltin following the forced swim test. In Experiment 2, bromodeoxyuridine (150 mg/kg, intraperitoneally/day) was administered on days 3-5 and sampling was on day 21 postinjection of trimethyltin. Samples were routinely embedded in paraffin and sections were obtained for histopathological investigation. In Experiment 1, rolipram-treated mice showed shortened immobility times in the forced swim test. Histopathology revealed that rolipram treatment had improved the replenishment of neuronal nuclei-positive neurons in the dentate gyrus, which was accompanied by an increase in the percentage of phosphorylated cyclic AMP response element-binding protein-positive cells. In addition, rolipram had decreased the percentage of ionized calcium-binding adapter protein 1-positive microglia with activated morphology and the number of tumor necrosis factor-alpha-expressing cells. In Experiment 2, double immunofluorescence for bromodeoxyuridine/neuronal nuclei revealed an increase of double-positive cells in rolipram-treated mice. These results demonstrate that rolipram effectively promotes brain tissue regeneration by enhancing the survival of newborn neurons and inhibiting neuroinflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call