Abstract
BackgroundTET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through “passive,” replication-dependent dilution when cells divide. A distinct, replication-independent (“active”) mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair.ResultsHere by analyzing inducible gene-disrupted mice, we show that DNA demethylation during primary T cell differentiation occurs mainly through passive replication-dependent dilution of all three oxi-mCs, with only a negligible contribution from TDG. In addition, by pyridine borane sequencing (PB-seq), a simple recently developed method that directly maps 5fC/5caC at single-base resolution, we detect the accumulation of 5fC/5caC in TDG-deleted T cells. We also quantify the occurrence of concordant demethylation within and near enhancer regions in the Il4 locus. In an independent system that does not involve cell division, macrophages treated with liposaccharide accumulate 5hmC at enhancers and show altered gene expression without DNA demethylation; loss of TET enzymes disrupts gene expression, but loss of TDG has no effect. We also observe that mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis.ConclusionsWe have quantified the relative contributions of TET and TDG to cell differentiation and DNA demethylation at representative loci in proliferating T cells. We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxi-mCs. In contrast, while we observe a low level of active, replication-independent DNA demethylation mediated by TDG, this process does not appear to be essential for immune cell activation or differentiation.
Highlights
TET enzymes mediate DNA demethylation by oxidizing 5methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC)
We have quantified the relative contributions of TET and thymine DNA glycosylase (TDG) to cell differentiation and DNA demethylation at representative loci in proliferating T cells
We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxidized methylcytosines (oxi-mCs)
Summary
TET enzymes mediate DNA demethylation by oxidizing 5methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through “passive,” replication-dependent dilution when cells divide. UHRF1 recognizes hemi-methylated CpGs through its SRA domain [1, 14, 15], and the DNMT1/UHRF1 complex interacts with proliferating cell nuclear antigen (PCNA) and travels with the DNA replication machinery [14, 15] This process restores symmetrical DNA methylation to newly synthesized DNA and is responsible for the partial heritability of DNA methylation. The resulting abasic sites are subject to base excision repair, leading to DNA demethylation via replacement of the original 5fC or 5caC with unmodified C [20]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.